$\cos ^{-1}\left(\frac{3}{5} \cos x+\frac{4}{5} \sin x\right)=$ |
$x+\tan ^{-1} \frac{4}{3}$ $x-\tan ^{-1} \frac{4}{3}$ $2 x+\tan ^{-1} \frac{4}{3}$ $2 x-\tan ^{-1} \frac{4}{3}$ |
$x-\tan ^{-1} \frac{4}{3}$ |
$\cos ^{-1}\left(\frac{3}{5} \cos x+\frac{4}{5} \sin x\right)$ .....(1) we know that $\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1$ let $\frac{3}{5}=\cos \theta \quad \frac{4}{5}=\sin \theta$ so $\tan \theta=4 / 3 \Rightarrow \theta=\tan ^{-1}(4 / 3)$ .......(2) Substituting in (1) $\cos ^{-1}(\cos \theta \cos x+\sin \theta \sin x)$ $\cos ^{-1} \cos (x-\theta)$ $=x-\theta$ We know that $\cos A \cos B+\sin A \sin B$ $=\cos (A-B)$ $\cos^{-1} \cos (A)=A$ from (2) substituting $\theta$ we get $x-\tan ^{-1} 4 / 3$ |