Let $A=\left[\begin{array}{ccc}1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1\end{array}\right] 0 \leq \theta \leq 2 \pi$, then : |
$|A|=0$ $|A| \in[2,4]$ $|A| \in(2,4)$ $|A| \in(2, \infty)$ |
$|A| \in[2,4]$ |
$|A|=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1\end{array}\right|$ ⇒ operation (R3 → R3 + R1) $|A|=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ 0 & 0 & 2\end{array}\right|$ expanding across R3 ⇒ 2(1 + cos2θ) = |A| = 0 ≤ θ ≤ 2π ⇒ 0 ≤ cos2θ ≤ 1 1 ≤ 1 + cos2θ ≤ 2 2 ≤ 2 (1 + cos2θ) ≤ 4 ⇒ |A| ∈ [2, 4] |