If \(\frac{a}{4}\) = \(\frac{b}{3}\) = \(\frac{c}{2}\) then find (\(\frac{a + b }{a + b + c }\)). |
\(\frac{4}{9}\) \(\frac{7}{9}\) \(\frac{7}{19}\) \(\frac{2}{9}\) |
\(\frac{7}{9}\) |
Given, \(\frac{a}{4}\) = \(\frac{b}{3}\) = \(\frac{c}{2}\) Here we can directly conclude that a = 4, b = 3, c = 2, hence ⇒ (\(\frac{a + b }{a + b + c }\)) = (\(\frac{4 + 3 }{4 + 3 + 2}\)) = \(\frac{7}{9}\) |