The interval in which $y=x^2 e^{-x}$ is strictly increasing is: |
$(-\infty, \infty)$ $(2, \infty)$ $(-2,0)$ $(0,2)$ |
$(0,2)$ |
The correct answer is Option (4) → $(0,2)$ $y=x^2 e^{-x}$ so $\frac{dy}{dx}=2xe^{-x}-x^2e^{-x}=0$ so $x(2-x)e^{-x}=0$ $x=0,2$ Using wavy curve method y is increasing strictly in (0, 2) |