If $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = (Ax +2) (Bx + C),$ then what is the value of (A + B + C) ? (A > 0) |
4 $4 + \sqrt{3}$ $2\sqrt{3}$ $4 - \sqrt{3}$ |
4 |
Given, 4\(\sqrt {3}\) x2 + 5x – 2\(\sqrt {3}\) = (Ax + 2)(Bx + C) According to the question, 4\(\sqrt {3}\) x2 + 5x – 2\(\sqrt {3}\) = 4\(\sqrt {3}\)x2 + 8x – 3x – 2\(\sqrt {3}\) = 4x(\(\sqrt {3}\) x + 2) – \(\sqrt {3}\) (\(\sqrt {3}\) x + 2) = (\(\sqrt {3}\) x + 2) (4x – \(\sqrt {3}\)) Now, ⇒ A = \(\sqrt {3}\), B = 4 and C = -\(\sqrt {3}\) (A + B + C) = (\(\sqrt {3}\) + 4 + (-\(\sqrt {3}\)) = (\(\sqrt {3}\) + 4 – \(\sqrt {3}\)) = 4 |