If the mean and the variance of a binomial distribution are 6 and 3 respectively, then the probability of five successes is : |
${^{12}C}_5 \left(\frac{1}{2}\right)^{12}$ ${^{16}C}_5 \left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{11}$ ${^{12}C}_5 \left(\frac{1}{2}\right)^{5} \left(\frac{2}{3}\right)^{7}$ ${^{12}C}_5 \left(\frac{1}{6}\right)^{5} \left(\frac{5}{6}\right)^{7}$ |
${^{12}C}_5 \left(\frac{1}{2}\right)^{12}$ |
The correct answer is Option (1) → ${^{12}C}_5 \left(\frac{1}{2}\right)^{12}$ In a Binomial Distribution, Mean, $μ=np$ Variance, $σ^2=np(1-p)$ and, $μ=6,σ^2=3$ $⇒np=6$ and, $np(1-p)=3$ $6(1-p)=3$ $p=\frac{1}{2}$ and $n=12$ the probability mass function (PMF) is, $P(X=k)={^nC}_kp^k(1-p)^{n-k}$ $P(X=5)={^{12}C}_5(\frac{1}{2})^5(\frac{1}{2})^{12-5}$ $={^{12}C}_5 \left(\frac{1}{2}\right)^{12}$ |