A solution curve of the differential equation $\left(x^2+x y+4 x+2 y+4\right) \frac{d y}{d x}-y^2=0, x>0$ passes through the point $(1,3)$. The solution curve (a) intersects $y=x+2$ exactly at one point |
(a), (b) (b), (c) (c), (d) (a), (d) |
(a), (d) |
The given differential equation is $\left(x^2+x y+4 x+2 y+4\right) \frac{d y}{d x}-y^2=0, x>0$ $\Rightarrow \left\{\left(x^2+4 x+4\right)+(x y+2 y)\right\} \frac{d y}{d x}=y^2$ $\Rightarrow \left\{(x+2)^2+y(x+2)\right\} \frac{d y}{d x}=y^2$ $\Rightarrow (x+2)(x+y+2) \frac{d y}{d x}=y^2$ $\Rightarrow \frac{d y}{d x}=\frac{y^2}{(x+2)(x+2+y)}$ ......(i) Let $x+2=X$ and $y=Y$. Then, $\frac{d y}{d x}=\frac{d y}{d Y} \frac{d Y}{d X} \frac{d X}{d x}=\frac{d Y}{d X}$. Substituting these values in (i), we get $\frac{d Y}{d X}=\frac{Y^2}{X(X+Y)}$ $\Rightarrow \left(X^2+X Y\right) d Y=Y^2 d X$ $\Rightarrow X^2 d Y=Y^2 d X-X Y d Y$ $\Rightarrow -\frac{1}{Y} d Y=\frac{X d Y-Y d X}{X^2}$ $\Rightarrow -\frac{1}{Y} d Y=d\left(\frac{Y}{X}\right)$ On integrating, we get $-\log |Y|=\frac{Y}{X}+C \Rightarrow-\log |y|=\frac{y}{x+2}+C$ .....(ii) The curve given in (ii) passes through the point $(1,3)$. ∴ $-\log 3=1+C \Rightarrow C=-\log 3-1$ Substituting the value of $C$ in (ii), we obtain $-\log |y|=\frac{y}{x+2}-\log 3-1$ .......(iii) In order to find the points of intersection (if any) of (iii) and $y=x+2$, we solve the two equations simultaneously. Putting $y=x+2$ in (iii), we obtain $-\log (x+2)=-\log 3 \Rightarrow x+2= \pm 3 \Rightarrow x=1$ [∵ x > 0] Putting $x=1$ in $y=x+2$, we obtain $y=3$. So, the solution curve (iii) intersects $y=x+2$ exactly at one point $(1,3)$. So, option (a) is correct but option (b) is incorrect. Putting $y=(x+2)^2$ in (iii), we obtain $-2 \log |x+2|=(x+2)-\log 3-1$ $\Rightarrow 2 \log (x+2)=-x-1+\log 3$ $\Rightarrow x+1+2 \log (x+2)=\log 3$ We find that $f(x)=x+1+2 \log (x+2)$ is strictly increasing for $x>0$ and its minimum value is $f(0)=1+2 \log 2>\log 3$. So, the above equation has no solution. So, $y=(x+2)^2$ does not intersect the solution curve. To find the point of intersection of the solution curve (iii) and $y=(x+3)^2$, we put $y=(x+3)^2$ in (iii) to get $-\log (x+3)^2=\frac{(x+3)^2}{x+2}-\log 3-1$ $\Rightarrow \log \frac{(x+3)^2}{3}+\frac{(x+3)^2}{x+2}-1=0$ For $x>0, \log \frac{(x+3)^2}{3}+\frac{(x+3)^2}{x+2}-1>0$. So, the above equation has no solution. Hence, $y=(x+3)^2$ does not intersect the solution curve. |