If $21 tan θ = 20,$ then $(1+ sinθ - cosθ) : ( 1 - sin θ + cos θ) $ is equal to : |
13 : 15 11 : 13 14 : 15 12 : 11 |
14 : 15 |
21 tan θ = 20 tan θ = \(\frac{20}{21}\) { tan θ = \(\frac{P}{B}\) } By using pythagoras theorem, P² + B² = H² 20² + 21² = H² H = 29 Now, ( 1 + sinθ - cosθ ) : ( 1 - sinθ + cosθ ) ( 1 + \(\frac{20}{29}\) - \(\frac{21}{29}\) ) : ( 1 - \(\frac{20}{29}\) + \(\frac{21}{29}\) ) ( \(\frac{29 + 20 - 21 }{29}\) ) : ( \(\frac{29 - 20 + 21 }{29}\) ) ( \(\frac{28 }{29}\) ) : ( \(\frac{30 }{29}\) ) 14 : 15 |