Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

If $A=\begin{bmatrix} 3 & -2\\ 4 & -2\\ \end{bmatrix}$ and $ I=\begin{bmatrix} 1 & 0\\ 0 & 1\\ \end{bmatrix}$, then for what value of $k$ we have $A^2=kA-2I$

Options:

$k=1$

$k=2$

$k=-1$

$k=3$

Correct Answer:

$k=1$

Explanation:

The correct answer is Option (1) → $k=1$

$A=\begin{bmatrix} 3 & -2\\ 4 & -2\\ \end{bmatrix}$

$A^2=\begin{bmatrix} 3 & -2\\ 4 & -2\\ \end{bmatrix}\begin{bmatrix} 3 & -2\\ 4 & -2\\ \end{bmatrix}=\begin{bmatrix} 1 & 2\\ 4 & -4\\ \end{bmatrix}$

and, $A^2=kA-2I$

$⇒\begin{bmatrix} 1 & 2\\ 4 & -4\\ \end{bmatrix}=\begin{bmatrix} 3k & -2k\\ 4k & -2k\\ \end{bmatrix}-\begin{bmatrix} 2 & 0\\ 0 & 2\\ \end{bmatrix}$

$⇒\begin{bmatrix} 1 & 2\\ 4 & -4 \end{bmatrix}=\begin{bmatrix} 3k-2 & -2k\\ 4k & -2k-2\end{bmatrix}$

$⇒3k-2=1$

$⇒3k=3$

$⇒k=1$