Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

If f(x), defined by $f(x)=\left\{\begin{array}{ll}k x+1 & \text { if } \quad x \leq \pi \\ \cos x & \text { if } \quad x>\pi\end{array}\right.$ is continuous at $x=\pi$, then the value of k is

Options:

0

$\pi$

$\frac{2}{\pi}$

$-\frac{2}{\pi}$

Correct Answer:

$-\frac{2}{\pi}$

Explanation:

The correct answer is Option (4) → $-\frac{2}{\pi}$