Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Algebra

Question:

if $x^2+y^2 =z^2 =xy+yz+zx  $ and x = 1, then find the value of $\frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}$.

Options:

2

0

-1

1

Correct Answer:

1

Explanation:

if $x^2+y^2 =z^2 =xy+yz+zx  $

Then put the value of x = y = z = 1

$\frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}$ = $\frac{10×1^4+5×1^4+7×1^4}{13×1^2×1^2+6×1^2×1^2+3×1^2×1^2}$

= \(\frac{22}{22}\) = 1