Let $A = \begin{bmatrix}\cos θ&-\sin θ\\\sin θ&\cos θ\end{bmatrix}$, then $(A^{-1})^T$ equals |
$\begin{bmatrix}\cos θ&-\sin θ\\\sin θ&\cos θ\end{bmatrix}$ $\begin{bmatrix}\cos θ&-\sin θ\\-\sin θ&\cos θ\end{bmatrix}$ $\begin{bmatrix}-\cos θ&\sin θ\\\sin θ&-\cos θ\end{bmatrix}$ $\begin{bmatrix}\cos θ&\sin θ\\-\sin θ&\cos θ\end{bmatrix}$ |
$\begin{bmatrix}\cos θ&-\sin θ\\\sin θ&\cos θ\end{bmatrix}$ |
The correct answer is Option (1) → $\begin{bmatrix}\cos θ&-\sin θ\\\sin θ&\cos θ\end{bmatrix}$ Let $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ This is a standard orthogonal matrix, so it satisfies: $A^{-1} = A^{T}$ Hence, $(A^{-1})^{T} = (A^{T})^{T} = A$ |