Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

If $f(x)=x^2;x \in (-2, 3),$ then absolute maximum and absolute minimum values (if any) are :

Options:

Absolute maximum =0, absolute minimum does not exist

Absolute maximum does not exist,  absolute minimum =0.

Absolute maximum and absolute minimum values do not exist

Absolute maximum =9 and Absolute minimum =4

Correct Answer:

Absolute maximum does not exist,  absolute minimum =0.

Explanation:

The correct answer is Option (2) → Absolute maximum does not exist,  absolute minimum = 0.

$f(x)=x^2$

for critical points,

$f'(c)=0$

$⇒2x=0$

$⇒x=0$

Now,

$f''(0)=2>0$

∴ $x=0$ is a local minima.