$∫sin^3x\, dx$ is equal to : |
$\frac{cos^3x}{3}+cos\, x+C$ $\frac{cos^3x}{3}-cos\, x+C$ $\frac{cos^2x}{3}-cos\, x+C$ $\frac{sin^3x}{3}+sin\, x+C$ |
$\frac{cos^3x}{3}-cos\, x+C$ |
The correct answer is Option (2) → $\frac{\cos^3x}{3}-\cos x+C$ $∫\sin^3x dx=\int\sin x.\sin^2xdx$ $=\int\sin x(1-\cos^2x)dx$ $=\sin xdx-\int\sin x\cos^2x dx$ $=-\cos x-\int\sin x\cos^2x dx$ let $u=\cos x$ $⇒\frac{du}{dx}=-\sin x⇒\frac{du}{-\sin x}=dx$ $∴\int\sin^3xdx=-\cos x+\int u^2du$ $=-\cos x+\frac{u^3}{3}+C$ $=-\cos x+\frac{\cos^3x}{3}+C$
|