For the LPP: Maximise z = 4x + y subject to constraints x + y ≤ 50, 3x + y ≤ 90, x ≥ 0, y ≥ 0 the maximum value of z is: |
110 120 50 100 |
120 |
The correct answer is Option (2) → 120 $z = 4x + y$ $x + y ≤ 50, 3x + y ≤ 90, x ≥ 0, y ≥ 0$ finding intersection $x + y = 50$ ...(1) $3x + y = 90$ ...(2) eq. (2) - eq. (1) $2x=40⇒x=20$ from (1) $y=30$
Maximum value of Z → 120 |