If ΔABC ∼ ΔQRP, $\frac{ar(Δ ABC)}{ar (Δ QRP)} = \frac{9}{4}$, Ab = 18 cm, BC = 15 cm, then the length of PR is _________. |
10 cm 12 cm 16 cm 14 cm |
10 cm |
By using the property of similar triagle ΔABC and ΔQRP is similar triangle. Then , \(\frac{Area\;of\; ΔABC }{Area \;of \;ΔQRP }\) = \(\frac{( Side \;of \;ΔABC)² }{( Side\; of\; ΔQRP)² }\) \(\frac{Area\;of\; ΔABC }{Area \;of \;ΔQRP }\) = \(\frac{(BC)² }{(PR)² }\) \(\frac{9 }{4 }\) = \(\frac{(15)² }{(PR)² }\) PR² = 100 PR = 10 cm |