The area of region bounded by the curve $y=x^2$ and the line $y=4$ is : |
$\frac{3}{32}$ sq.unit $\frac{31}{3}$ sq.unit $\frac{32}{3}$ sq.unit $\frac{3}{31}$ sq.unit |
$\frac{32}{3}$ sq.unit |
Curve: $y = x^2$, Line: $y = 4$ Intersection points: $x^2 = 4 \Rightarrow x = -2, 2$ Area = $\int_{-2}^{2} (4 - x^2) \, dx$ = $\int_{-2}^{2} 4 \, dx - \int_{-2}^{2} x^2 \, dx$ = $[4x]_{-2}^{2} - \left[\frac{x^3}{3}\right]_{-2}^{2}$ = $(4*2 - 4*(-2)) - \left(\frac{8}{3} - \frac{-8}{3}\right)$ = $(8 + 8) - \left(\frac{16}{3}\right)$ = $16 - \frac{16}{3} = \frac{48 - 16}{3} = \frac{32}{3}$ Answer: $\frac{32}{3}$ |