Integrating factor of the differential equation $\left(1-y^2\right) \frac{dx}{dy}+x y=a y$ is: |
$\frac{1}{1-y^2}$ $\frac{1}{\sqrt{y^2-1}}$ $\frac{1}{y^2-1}$ $\frac{1}{\sqrt{1-y^2}}$ |
$\frac{1}{\sqrt{1-y^2}}$ |
The correct answer is Option (4) - $\frac{1}{\sqrt{1-y^2}}$ I.F. = ? dividing eq. by $1-y^2$ so $\frac{dx}{dy}+\frac{y}{1-y^2}x=\frac{ay}{1-y^2}$ $I.F.=e^{\int\frac{y}{1-y^2}}dy=e^{-\frac{1}{2}\int\frac{-2y}{1-y^2}}dy$ $=e^{-\frac{1}{2}\log 1-y^2}=\frac{1}{\sqrt{1-y^2}}$ |