The surface area of an open box with a square base is 36 square units. It's maximum volume (in cubic units) is: |
$9\sqrt{3}$ $12\sqrt{3}$ 15 18 |
$12\sqrt{3}$ |
Let base square has edge = x and height of box = y so surface area = $4×xy+x^2=36$ (given) volume = $yx^2=V$ $S=4xy+x^2=36⇒xy=\frac{36-x^2}{4}$ so $V=xy×x=(\frac{36-x^2}{4})(x)$ $V(x)=9x-\frac{x^3}{4}$ so $V(x)=9-\frac{3x^2}{4}⇒V'(x)=0$ ar $x^2=12$ $x=2\sqrt{3}$ as $x≥0$ $V^n(x)=\frac{-6x}{4}⇒V''(2\sqrt{3})<0$ so $2\sqrt{3}$ → point of local maxima $V(2\sqrt{3}=9(2\sqrt{3})-\frac{(2\sqrt{3})^3}{4}$ $=18\sqrt{3}-\frac{8×3\sqrt{3}}{4}$ $=12\sqrt{3}$ sq. units |