The domain of $y=cos^{-1}(x^2-4)$ is : |
$[3, 5]$ $[0, \pi]$ $[-\sqrt{5}, -\sqrt{3}]∩[-\sqrt{5}, \sqrt{3}]$ $[-\sqrt{5}, -\sqrt{3}]∪[\sqrt{3}, \sqrt{5}]$ |
$[-\sqrt{5}, -\sqrt{3}]∪[\sqrt{3}, \sqrt{5}]$ |
Given function: $y=\cos^{-1}(x^{2}-4)$ Domain condition: Argument of $\cos^{-1}$ must lie in $[-1,1]$. $-1 \leq x^{2}-4 \leq 1$ Add $4$ to all sides: $3 \leq x^{2} \leq 5$ Taking square root: $\sqrt{3} \leq |x| \leq \sqrt{5}$ So, $x \in [-\sqrt{5},-\sqrt{3}] \cup [\sqrt{3},\sqrt{5}]$ Domain = $[-\sqrt{5},-\sqrt{3}] \cup [\sqrt{3},\sqrt{5}]$ |