Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

The domain of $y=cos^{-1}(x^2-4)$ is :

Options:

$[3, 5]$

$[0, \pi]$

$[-\sqrt{5}, -\sqrt{3}]∩[-\sqrt{5}, \sqrt{3}]$

$[-\sqrt{5}, -\sqrt{3}]∪[\sqrt{3}, \sqrt{5}]$

Correct Answer:

$[-\sqrt{5}, -\sqrt{3}]∪[\sqrt{3}, \sqrt{5}]$

Explanation:

Given function: $y=\cos^{-1}(x^{2}-4)$

Domain condition: Argument of $\cos^{-1}$ must lie in $[-1,1]$.

$-1 \leq x^{2}-4 \leq 1$

Add $4$ to all sides:

$3 \leq x^{2} \leq 5$

Taking square root:

$\sqrt{3} \leq |x| \leq \sqrt{5}$

So, $x \in [-\sqrt{5},-\sqrt{3}] \cup [\sqrt{3},\sqrt{5}]$

Domain = $[-\sqrt{5},-\sqrt{3}] \cup [\sqrt{3},\sqrt{5}]$