If tan θ + sec θ = 7, θ being acute, then the value of 5 sin θ is: |
$\frac{25}{24}$ $\frac{24}{25}$ $\frac{1}{24}$ $\frac{24}{5}$ |
$\frac{24}{5}$ |
Given :- tan θ + sec θ = 7 -----(1) Then , sec θ - tan θ = \(\frac{1}{7}\) -----------(2) Adding equation 1 & 2 2sec θ = 7 + \(\frac{1}{7}\) = \(\frac{50}{7}\) H = 25 , B = 7 By using pythagoras theorem P2 + B2 = H2 P2 + 72 = 252 P = 24 So , 5sinθ = 5 × \(\frac{24}{25}\) = \(\frac{24}{5}\) |