The probability that a plant A survives is $\frac{3}{4}$ and the probability that another plant B survives is $\frac{1}{3}$. The probability that only one of them survives is : |
$\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{12}$ $\frac{7}{12}$ |
$\frac{7}{12}$ |
Let A → plant A survives B → plant B survives $P(A)=3 / 4$ $P(B)=1 / 3$ $P(A \cap B)=P(A) P(B)$ $=\frac{3}{4} \times \frac{1}{3}$ $P(A \cap B)=1 / 4$ $A \cap B \rightarrow$ Plant $A$ and $B$ both survive $A \cup B \rightarrow$ Plant $A$ or $B$ survives $P(\text { required })=P(A \cup B)-P(A \cap B)$ as $P(A \cup B) = P(A)+P(B) - P(A \cap B)$ $=P(A)+P(B) \leq P(A \cap B)-P(A \cap B)$ $=P(A)+P(B)-2 P(A \cap B)$ $=\frac{3}{4}+\frac{1}{3}-2 \times \frac{1}{4}$ $=\frac{9+4-6}{12}=\frac{7}{12}$ |