If $\begin{bmatrix}-1&1&0\\a&b&1\\1&2&1\end{bmatrix}$ is a singular matrix, then the relation between a and b is: |
$2a = b$ $a+b=0$ $a+b=3$ $a + b = ab$ |
$a+b=3$ |
The correct answer is Option (3) → $a+b=3$ GivenMatrix: $A = \begin{bmatrix}-1 & 1 & 0 \\ a & b & 1 \\ 1 & 2 & 1\end{bmatrix}$ For a singular matrix, $|A| = 0$ Compute determinant: $|A| = -1 \begin{vmatrix}b & 1 \\ 2 & 1\end{vmatrix} - 1 \begin{vmatrix}a & 1 \\ 1 & 1\end{vmatrix} + 0 \begin{vmatrix}a & b \\ 1 & 2\end{vmatrix}$ $= -1 (b\cdot1 - 1\cdot2) -1 (a\cdot1 - 1\cdot1) + 0 = -(b-2) - (a-1) = -b +2 -a +1 = -(a+b) +3$ Set $|A| = 0$: $-(a+b) +3 =0 \Rightarrow a+b =3$ |