The fractional change in the value of free-fall acceleration ‘g’ for a particle when it is lifted from the surface to an elevation h (h<<R) is |
$\frac{h}{R}$ $-\frac{2 h}{R}$ $\frac{2 h}{R}$ None of these |
$-\frac{2 h}{R}$ |
$g=\frac{G M}{R^2}$ . . .(i) $\frac{dg}{dR}=\frac{-2 GM}{R^3}$ putting dR = h we obtain $\Rightarrow \frac{dg}{h}=\frac{-2 GM}{R^2} . \frac{1}{R}$ . . . (ii) From (i) and (ii) $\Rightarrow \frac{dg}{g}=-2\left(\frac{h}{R}\right)$ ⇒ Change is –ve. That means g decreases |