If $A=\begin{bmatrix}0 & -1\\0 & 2\end{bmatrix} $ and $I=\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$ and $A^2=3A+kI,$ then the value of k is : |
3 4 No real value of k exists -3 |
No real value of k exists |
The correct answer is Option (3) → No real value of k exists $A=\begin{bmatrix}0 & -1\\0 & 2\end{bmatrix}⇒A^2=A.A=\begin{bmatrix}0 & -1\\0 & 2\end{bmatrix}\begin{bmatrix}0 & -1\\0 & 2\end{bmatrix}$ $⇒A^2=\begin{bmatrix}0 & -2\\0 & 4\end{bmatrix}$ so $A^2=3A+kI$ $⇒kI=\begin{bmatrix}0 & -2\\0 & 4\end{bmatrix}-\begin{bmatrix}0 & -3\\0 & 6\end{bmatrix}$ so $kI=\begin{bmatrix}0 & 1\\0 & 2\end{bmatrix}$ so for no value of k the equation holds ⇒ No real/imaginary value of k exists |