CUET Preparation Today
CUET
-- Mathematics - Section B1
Applications of Derivatives
The value of a for which the function f(x)=(4a−3)(x+log5)+2(a−7)cotx2sin2x2 does not possess critical points, is (a) (−∞,−4/3) |
(a) and (b) (a) and (d) (b) and (c) (b) and (d) |
(a) and (d) |
We have, f(x)=(4a−3)(x+log5)+2(a−7)cotx2sin2x2 ⇒f(x)=(4a−3)(x+log5)+(a−7)sinx ∴ f′(x)=(4a−3)+(a−7)cosx If f(x) does not have critical points, then f'(x) = 0 does not have any solution in R. Now, f'(x) = 0 ⇒cosx=4a−37−a ⇒|4a−37−a|≤1 [∵ |cos x| ≤ 1] ⇒−1≤4a−37−a≤1 ⇒a−7≤4a−3≤7−a⇒a≥−4/3 or a≤2 Thus, f'(x) = 0 has solutions in R if a≥−4/3 or a≤2. So, f'(x) = 0 is not solvable in R if a<−4/3 or a>2 a∈(−∞−4/3)∪(2,∞) |