$\sin\left(2\tan^{-1}\frac{5}{12}\right)$ is equal to |
$\frac{120}{169}$ $-\frac{120}{169}$ $\frac{169}{120}$ $-\frac{169}{120}$ |
$\frac{120}{169}$ |
$\sin\left(2\tan^{-1}\frac{5}{12}\right)$ $=\sin\left(\tan^{-1}\left(\frac{2×\frac{5}{12}}{1-\frac{5^2}{12^2}}\right)\right)$ $[∵2\tan^{-1}x=\tan^{-1}\frac{2x}{1-x^2}]$ $=\sin\left[\tan^{-1}\left[\frac{10/12}{(144-25)/144}\right]\right]$ $=\sin\left(\tan^{-1}[\frac{120}{119}]\right)$ let $\tan^{-1}(\frac{120}{119})=x$ Using pythagoras theorem $=\sqrt{119^2+120^2}=169$ $⇒x=\sin^{-1}(\frac{120}{169})$ $\sin(\sin^{-1}(\frac{120}{169}))$ $=\frac{120}{169}$ |