If $(2 x+y)^3-(x-2 y)^3=(x+3 y)\left[A x^2+B y^2+C x y\right]$, then what is the value of $(A+2 B+C)$ ? |
13 14 7 10 |
10 |
We know that, x3 - y3 = (x - y)(x2 + y2 + xy) (2x + y)3 - (x - 2y)3 = (2x + y - x + 2y)[(2x + y)2 + (x - 2y)2 + (2x + y)(x - 2y)] = (x + 3y)[4x2 + y2 + 4xy + x2 + 4y2 - 4xy + 2x2 - 4xy + xy - 2y2] = (x + 3y)[7x2 + 3y2 - 3xy] So, A = 7, B = 3 and C = - 3 So the value of(A + 2B + C) = 7 + 6 - 3 = 10 |