Two chords AB and CD of a circle with centre O intersect each other at P. If ∠AOD = 120° and ∠BOD = 50°, then the value of ∠APC is? |
85° 75° 95° 100° |
95° |
∠AOD = 120° ∠ACD = \(\frac{1}{2}∠AOD\) ∠ACD = 60° = ∠ACP ∠BOC = 50° ∠CAB = \(\frac{1}{2}∠BOC\) = 25° = ∠CAP Now, in ΔACP ∠APC = 180° - (∠ACP + ∠CAP) ∠APC = 180° - (60° + 25°) = 180° - 85° ∠APC = 95° |