The area enclosed by the ellipse $\frac{x^2}{9^2}+\frac{y^2}{6^2}=1$ is: |
15 π 54 π 18 π $\frac{3}{2}π$ |
54 π |
$\frac{x^2}{9^2}+\frac{y^2}{6^2}=1$ so $y=\frac{6}{9}\sqrt{9^2-x^2}$ so are of curve in all quadrants are equal ⇒ total area = 4 × area of curve in Ist quadrant $⇒4\int_0^9y\,dx=4×\frac{6}{9}\int_0^9\sqrt{9^2-x^2}dx$ $=4×\frac{6}{9}\left[\frac{x}{2}\sqrt{9^2-x^2}+\frac{9^2}{2}\sin\frac{x}{9}\right]_0^9$ $=4×\frac{6}{9}×\left(\frac{9^2}{2}×\frac{π}{2}\right)=54 π$ |