The point on the curve $3 y=6 x-5 x^3$ the normal at which passes through the origin, is |
(1, 1/3) (1/3, 1) (2, -28/3) (-1, -1/3) |
(1, 1/3) |
Let the required point be $(x_1, y_1)$ Now, $3 y=6 x-5 x^3$ $\Rightarrow 3 \frac{d y}{d x}=6-15 x^2 \Rightarrow \frac{d y}{d x}=2-5 x^2 \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_1, y_1\right)}=2-5 x_1^2$ The equation of the normal at $\left(x_1, y_1\right)$ is $y-y_1=\frac{-1}{2-5 x_1^2}\left(x-x_1\right)$ If it passes through the origin, then $0-y_1=\frac{1}{2-5 x_1{ }^2}\left(0-x_1\right) \Rightarrow y_1=\frac{-x_1}{2-5 x_1{ }^2}$ .......(i) Since $\left(x_1, y_1\right)$ lies on the given curve. Therefore, $3 y_1=6 x_1-5 x_1^3$ .......(ii) Solving (i) and (ii), we obtain $x_1=1$ and $y_1=1 / 3$ Hence, the required point is (1, 1/3). |