The interval in which the function $f(x)=2 x^3-3 x^2-36 x+7$ is strictly decreasing is : |
(-3, -2) (-2, 3) (2, 3) (2, -3) |
(-2, 3) |
$f(x) =2 x^3-3 x^2-36 x+7$ differentiating f(x) wrt x so $f'(x) =6 x^2-6 x-36$ so $f'(x) =6(x^2-x-6)$ $f'(x) =6(x^2-3 x+2 x-6)$ $\Rightarrow f'(x)=6(x(x-3)+2(x-3))$ So $f'(x) = 6(x+2)(x-3)$ finding critical points $\Rightarrow f'(x)=0 \Rightarrow 6(x+2)(x-3)=0$ $\Rightarrow x = -2, 3$ using wavy curve method x > 3 (f'(x) > 0) f(x) (increasing) -2 < x < 3 (f'(x) < 0) f(x) (decreasing) x < -2 (f'(x)) > 0 f(x) (increasing) So (-2, 3) |