The interval on which the function $f(x) = x^4 -\frac{x^3}{3}$ is strictly decreasing, is: |
$(4, ∞)$ $(\frac{1}{4}, ∞)$ $(-∞,\frac{1}{4})$ $(0,\frac{1}{4})$ |
$(-∞,\frac{1}{4})$ |
The correct answer is Option (3) → $(-∞,\frac{1}{4})$ Given: $f(x) = x^4 - \frac{x^3}{3}$ Compute first derivative: $f'(x) = 4x^3 - x^2$ $f'(x) = x^2(4x - 1)$ Now, find where $f'(x) < 0$: $x^2(4x - 1) < 0$ $x^2 \ge 0$ always, so the sign of $f'(x)$ depends on $(4x - 1)$ $(4x - 1) < 0 \Rightarrow x < \frac{1}{4}$ Therefore, $f'(x) < 0$ only when $x < \frac{1}{4}$ The function is strictly decreasing on $(-\infty, \frac{1}{4})$ |