The area of the region enclosed between $y^2=4x$ and $x=1$ and $x=3$ in the first quadrant is : |
$\frac{4}{3}(3\sqrt{3}-1)$ $\frac{4}{3}(3\sqrt{3}+1)$ $\frac{2}{3}(3\sqrt{3}-1)$ $\frac{8}{3}(3\sqrt{3}-1)$ |
$\frac{4}{3}(3\sqrt{3}-1)$ |
The correct answer is Option (1) → $\frac{4}{3}(3\sqrt{3}-1)$ By symmetry I = II required area = I (first quardrant) $=\int\limits_1^22\sqrt{x}dx$ $=\frac{4}{3}\left[x^{\frac{3}{2}}\right]_1^3$ $=\frac{4}{3}[3\sqrt{3}-1]$ |