Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

The integrating factor of $sin x\frac{dy}{dx}+2ycos x=4$ is :

Options:

|sin x|

$|sin x|^2$

$|sin x^2|$

$|cos x|$

Correct Answer:

$|sin x|^2$

Explanation:

The correct answer is Option (2) → $|\sin x|^2$

$\sin x\frac{dy}{dx}+2y\cos x=4$

$\frac{dy}{dx}+2y\frac{\cos x}{\sin x}=\frac{4}{\sin x}$ dividing by $\sin x$

$I.F.=e^{\int\frac{2\cos x}{\sin x}}dx=e^{2\log|\sin x|}=|\sin x|^2$