A biased dice is thrown once. If X denotes the number appearing on it and have probability distribution :
where k > 0. Then consider the following statements : A. P(X = 3) Choose the correct answer from the options given below : |
C > D > B > A > E E > C > D > A > B E > C > A > B > D None of these |
E > C > A > B > D |
From distribution $∑P(x) = 1$ $k + \frac{k}{2}+2k+8k^2+1-5k+\frac{k}{2}=1$ so $8k^2-k=0$ $8k^2=k$ so $k=0$ or $k=\frac{1}{8}$ A. $P(X = 3) = 2k$ B. $P(X ≤ 2) = k + \frac{k}{2} = \frac{3k}{2}$ C. $P(X ≥ 5) = 1 - 5k + \frac{k}{2} = 1 - \frac{9k}{2}$ D. $P(X = 4) = 8k^2$ E. $P(X = 1) + P(X = 5) = k + 1 - 5k = 1 - 4k$ for $k=0$ $A=0,B=0,C=0,D=0,E=0$ (Neglected) for $k=\frac{1}{8}$ $A=\frac{1}{4}, B=\frac{3}{16},C=\frac{7}{16},D=\frac{1}{8},E=\frac{1}{2}$ $A=\frac{4}{16}, B=\frac{3}{16},C=\frac{7}{16},D=\frac{2}{16},E=\frac{8}{16}$ so $E>C>A>B>D$ |