If A is skew-symmetric matrix of order 2 and B, C are matrices $\begin{bmatrix}1&4\\2&9\end{bmatrix}$ and $\begin{bmatrix}9&-4\\-2&1\end{bmatrix}$ respectively. Then $A^3BC + A^5 (B^2C^2) + A^7 (B^3C^3) + ... + A^{2n+1}B^nC^n$, is |
a symmetric matrix a skew-symmetric matrix an identity matrix none of these |
a skew-symmetric matrix |
We observed that $BC=I=CB$. $∴B^nC^n =C^nB^n = I$ for all $n ∈ N$ Let $X=A^3BC + A^5 (B^2C^2) + A^7 (B^3C^3) +...+ A^{2n+1}B^nC^n$. Then $X=A^3I+A^5I + A^7I+ ... + A^{2n+1}I$ [Using (i)] $⇒X^T = A^3 + A^5 +A^7+ ... + A^{2n+1}$ $⇒X^T = (A^3 + A^5 +A^7+ ... + A^{2n+1})^T$ $⇒X^T = (A^3)^T +(A^5)^T+(A^7)^T +...+(A^{2n+1})^T$ $⇒X^T = (A^T)^3 + (A^T)^5+ (A^T)^7+ .... + (A^T)^{2n+1}$ $⇒X^T=(-A)^3 + (-A)^5 +(-A)^7+...+(-A)^{2n+1}$ $[∵ A^T=-A]$ $⇒X^T=-X⇒X$ is a skew-symmetric matrix. |