$f(x)=\frac{x}{1+[x]}$, is discontinuous in set s, where s is |
{[−1, 0) ∪ integers} {all real numbers} {all positive rational} none of these |
{[−1, 0) ∪ integers} |
$f(x)=\frac{x}{1+n}$, n ≤ x < n + 1 (i) clearly, if n = −1 then f(x) is not defined i.e. f(x) is not defined ∀ x ∈ [−1, 0) (ii) if n ≠ −1 $f(x)=-\frac{x}{2}$; −3 ≤ x < −2 (n = −3) = −x ; −2 ≤ x < −1 (n = −2) = x ; 0 ≤ x < +1 (n = 0) = ………. …………. Clearly, the function is discontinuous at all integral values of x. From (i) and (ii) f(x) is not continuous in set ‘S’ S = {[−1, 0) ∪ integers}. |