The area of the region bounded by the parabola $y^2 = 8x$ and its latus rectum in the first quadrant, is |
$\frac{8}{3}$ sq. units $\frac{32}{3}$ sq. units $\frac{16\sqrt{2}}{3}$ sq. units $\frac{16}{3}$ sq. units |
$\frac{16}{3}$ sq. units |
The correct answer is Option (4) → $\frac{16}{3}$ sq. units Given: Parabola $y^2 = 8x$ ⇒ $y = \sqrt{8x}$ in the first quadrant Latus rectum: $x = 2$ Calculate the area between $x = 0$ and $x = 2$ under the curve in terms of $dx$: Area = $\int_{x=0}^{2} y \, dx = \int_{0}^{2} \sqrt{8x} \, dx$ $= \int_{0}^{2} \sqrt{8} \cdot \sqrt{x} \, dx = \sqrt{8} \int_{0}^{2} x^{1/2} \, dx$ $= \sqrt{8} \cdot \frac{2}{3} x^{3/2} \Big|_0^2$ $= \sqrt{8} \cdot \frac{2}{3} \cdot (2)^{3/2}$ $= \frac{2}{3} \cdot \sqrt{8} \cdot \sqrt{8} = \frac{2}{3} \cdot 8 = \frac{16}{3}$ |