The maximum torque acting on a coil having an effective area $0.04 m^2$ and carrying current of 100 μA is $4 × 10^{-8} N m$, when placed in a magnetic field. The magnitude of the magnetic field is |
$10^{-1} Wb\, m^{-2}$ $10^{-2} Wb\, m^{-2}$ $2 × 10^{-3} Wb\, m^{-2}$ $4.2 × 10^{-2} Wb\, m^{-2}$ |
$10^{-2} Wb\, m^{-2}$ |
The correct answer is Option (2) → $10^{-2} Wb\, m^{-2}$ Given: Effective area $A = 0.04 \, m^2$ Current $I = 100 \, \mu A = 100 \times 10^{-6} A$ Maximum torque $\tau_{max} = 4 \times 10^{-8} \, Nm$ Number of turns $N = 1$ (not mentioned, so assumed) Formula: $\tau_{max} = N I A B$ Substitute values: $4 \times 10^{-8} = (1) \times (100 \times 10^{-6}) \times (0.04) \times B$ $4 \times 10^{-8} = 4 \times 10^{-6} \times B$ $B = \frac{4 \times 10^{-8}}{4 \times 10^{-6}}$ $B = 10^{-2} \, T$ |