If the lines $6x -2 = 3y + 1= 2z - 2$ and $\frac{x-2}{λ}=\frac{2y-5}{-3}, z = - 2$ are perpendicular, then λ = |
3 2 -3 1 |
3 |
The equation of the given lines can be re-written as $\frac{x-1/3}{1}=\frac{y+1/3}{2}=\frac{z-1}{3}$ and $\frac{x-2}{λ}=\frac{y-5/2}{-3/2}=\frac{z+2}{0}$ If these lines are perpendicular, then $1 × λ +2 × (-\frac{3}{2}) + 3 ×0=0 ⇒ λ-3 = 0 ⇒λ = 3$ |