The position vector of a point which divides the line joining the points with position vectors \( (\vec{a} - 2\vec{b}) \) and \( (2\vec{a} + \vec{b}) \) externally in the ratio \( 2 : 1 \), is |
\( 3\vec{a} + 4\vec{b} \) \( -3\vec{a} + 4\vec{b} \) \( 3\vec{a} - 4\vec{b} \) \( \frac{5}{3} \vec{a} \) |
\( 3\vec{a} + 4\vec{b} \) |
The correct answer is Option (1) → \( 3\vec{a} + 4\vec{b} \) Given:
Formula for external division of position vectors: If point $P$ divides $\vec{A}$ and $\vec{B}$ externally in the ratio $m:n$, then $\vec{P} = \frac{m\vec{B} - n\vec{A}}{m - n}$ Using $m = 2$, $n = 1$:
$\vec{P} = \frac{2(2\vec{a} + \vec{b}) - 1(\vec{a} - 2\vec{b})}{2 - 1}$ |