The smallest wavelength in the spectral lines of Paschen series in the hydrogen atom is (Given: $R = 1.097 × 10^7 m^{-1}$) |
4102 Å 6304 Å 8204 Å 9846 Å |
8204 Å |
The correct answer is Option (3) → 8204 Å For hydrogen atom, the wavelength of spectral lines is given by Rydberg formula: $\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ For Paschen series, $n_1 = 3$, $n_2 = 4,5,6,...$ The smallest wavelength corresponds to the largest energy difference → $n_2 \to \infty$ $\frac{1}{\lambda_\text{min}} = R \left( \frac{1}{3^2} - 0 \right) = \frac{R}{9}$ $\lambda_\text{min} = \frac{9}{R}$ Given $R = 1.097 \times 10^7 \, \text{m}^{-1}$ $\lambda_\text{min} = \frac{9}{1.097 \times 10^7} \approx 8.204 \times 10^{-7} \, \text{m}$ |