Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Continuity and Differentiability

Question:

Which of the following is true ?

Options:

$∫\frac{dx}{x^2+a^2}=\frac{1}{2a}log\left|\frac{x-a}{x+a}\right|+c,$ where c is an arbitrary constant

$∫\frac{dx}{x^2-a^2}=\frac{1}{2a}log\left|\frac{x-a}{x+a}\right|+c,$ where c is an arbitrary constant

$∫\frac{dx}{x^2-a^2}=\frac{1}{2a}log\left|\frac{x+a}{x-a}\right|+c,$ where c is an arbitrary constant

$∫\frac{dx}{x^2+a^2}=\frac{1}{2a}log\left|\frac{x+a}{x-a}\right|+c,$ where c is an arbitrary constant

Correct Answer:

$∫\frac{dx}{x^2-a^2}=\frac{1}{2a}log\left|\frac{x-a}{x+a}\right|+c,$ where c is an arbitrary constant

Explanation:

The correct answer is Option (2) → $∫\frac{dx}{x^2-a^2}=\frac{1}{2a}log\left|\frac{x-a}{x+a}\right|+c,$ where c is an arbitrary constant

$∫\frac{dx}{x^2+a^2}=\frac{1}{2a}\int\frac{(x+a)-(x-a)}{(x-a)(x+a)}dx$

$=\frac{1}{2a}\left[\int\frac{1}{x-a}dx-\int\frac{1}{x+a}dx\right]$

$=\frac{1}{2a}\left[\log|x-a|-\log|x+a|\right]$

$=\frac{1}{2a}\log\left|\frac{x-a}{x+a}\right|+c$  [c = constant]