Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Index Numbers and Time Based Data

Question:

The test statistic $t=\frac{191-199}{\sqrt{\frac{(38)^2}{8}+\frac{(12)^2}{10}}}=-0.57$ Identity correct set of values of given options :

Options:

$\overline{x}_1=191, s_1=12, s_2=38$

$\overline{x}_1=199, s_1=38, n_2=10$

$\overline{x}_1=191, s_1=38, n_1=8$

$\overline{x}_1=191, s_1=12, n_2=10$

Correct Answer:

$\overline{x}_1=191, s_1=38, n_1=8$

Explanation:

The correct answer is Option (3) → $\overline{x}_1=191, s_1=38, n_1=8$

The test statistic is,

$t=\frac{\bar{x_1}-\bar{x_2}}{\sqrt{\frac{{s_1}^2}{n_1}+\frac{{s_2}^2}{n_2}}}$

$=\frac{191+199}{\sqrt{\frac{(38)^2}{8}+\frac{(12)^2}{10}}}$

$⇒\bar{x_1}=191, s_1=38, n_1=8$