The point on the curve $y^2 = x,$ where the tangent makes an angle of $\frac{\pi }{4}$ with x-axis is : |
$\left(\frac{1}{2}, \frac{1}{4}\right)$ $\left(\frac{1}{4}, \frac{1}{2}\right)$ (4, 2) (2, 4) |
$\left(\frac{1}{4}, \frac{1}{2}\right)$ |
The correct answer is Option (2) → $\left(\frac{1}{4}, \frac{1}{2}\right)$ $y^2=x$ so $2y\frac{dy}{dx}=1⇒\frac{dy}{dx}=\frac{1}{2y}$ (tangent makes $\frac{π}{4}$ with x-axis) so $\frac{dy}{dx}=\tan\frac{π}{4}=\frac{1}{2y}$ so $y=\frac{1}{2}$ $⇒x=\frac{1}{4}$ Point $\left(\frac{1}{4}, \frac{1}{2}\right)$ |