Consider the curves, $x^2+y^2=1$ and $(x-1)^2+y^2=1.$ Points of intersection of two curves are : |
$(0, ±1)$ $(0, ±\frac{\sqrt{3}}{2})$ $(\frac{1}{2}, ±\frac{\sqrt{3}}{2})$ $( ±1, 0)$ |
$(\frac{1}{2}, ±\frac{\sqrt{3}}{2})$ |
The correct answer is Option (3) → $(\frac{1}{2}, ±\frac{\sqrt{3}}{2})$ $x^2+y^2=1$ ...(1) $(x-1)^2+y^2=1$ ...(2) comparing them $x^2=(x-1)^2$ so $x-1=±x$ so $x=\frac{1}{2}$ at $x=\frac{1}{2}$ $(\frac{1}{2})^2+y^2=1⇒y^2=\frac{3}{4}⇒y=±\frac{\sqrt{3}}{2}$ Points of intersection $(\frac{1}{2},±\frac{\sqrt{3}}{2})$ |