Let X be a discrete random variable with probability distribution defined as : $P(X=x)=\left\{\begin{matrix}kx& for & x=0, 1\\kx-\frac{1}{2} & for & x=2, 3\\0 & otherwise \end{matrix}\right.$ then k is equal to : |
$\frac{2}{7}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{6}$ |
$\frac{1}{3}$ |
The correct answer is Option (2) → $\frac{1}{3}$ $P(X=x)=\left\{\begin{matrix}kx& for & x=0, 1\\kx-\frac{1}{2} & for & x=2, 3\\0 & otherwise \end{matrix}\right.$ Sum of all probabilities must be, $k(0)+k(1)+k(2)-\frac{1}{2}+k(3)-\frac{1}{2}=1$ $k+2k+3k=2$ $6k=2$ $⇒k=\frac{2}{6}=\frac{1}{3}$ |