A charged particle with charge 0.01 C rotates on a circular path of radius 0.5 m, with velocity 0.2 m/s. What is the value of B at the center of the circle? |
$8 \pi \times 10^{-10} T$ $16 \pi \times 10^{-10} T$ $4 \pi \times 10^{-11} T$ $8 \pi \times 10^{-11} T$ |
$8 \pi \times 10^{-10} T$ |
The correct answer is Option (1) → $8 \pi \times 10^{-10} T$ The equivalent current (I) is the charge passing (q) through the 100 per unit time (t). $I=\frac{q}{t}$ [q = 0.01 C [given]] Also, $t=\frac{circumference}{velocity}=\frac{2π(0.5)}{0.2}=\frac{π}{0.2}$ $t=5π\,s$ $∴I=\frac{0.01}{5π}A$ Now, $B=\frac{μ_0I}{2r}$ where, B = Magnetic field $∵B=\frac{(4π×10^{-7})(0.01)}{2×0.5×5π}$ $=\frac{4π×10^{-9}}{5π}$ $=8×10^{-10} T$ |