Value of $\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\log(\tan x)dx$ is |
$\frac{\pi}{4}$ $\frac{\pi}{12}$ 0 $\pi$ |
0 |
The correct answer is Option (3) → 0 Evaluate the definite integral: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \log(\tan x)\, dx$ Use the identity: $\int_a^{b} \log(\tan x)\, dx = 0$ if $a + b = \frac{\pi}{2}$ Here, $\frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}$ So, the value of the integral is: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \log(\tan x)\, dx = 0$ |